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Abstract 

Assimilation of hyperspectral sounder data into numerical weather prediction (NWP) 

models has proven vital to generating accurate model analyses of tropospheric temperature and 

humidity where few conventional observations exist. Applications to storm-scale models are 

limited since the low temporal resolution provided by polar orbiting sensors cannot adequately 

sample rapidly changing environments associated with high impact weather events. To address 

this limitation, hyperspectral sounders have been proposed for geostationary orbiting satellites, 

but these have yet to be built and launched in part due to much higher engineering costs and a 

lack of a definite requirement for the data.  

This study uses an Observation System Simulation Experiment (OSSE) approach to 

simulate temperature and humidity profiles from a hypothetical geostationary-based sounder 

from a nature run of a high impact weather event on 20 May 2013. The simulated observations 

are then assimilated using an ensemble adjustment Kalman filter approach, testing both hourly 

and 15 minute cycling to determine their relative effectiveness at improving the near storm 

environment. Results indicate that assimilating both temperature and humidity profiles reduced 

mid-tropospheric both mean and standard deviation of analysis and forecast errors compared to 

assimilating conventional observations alone. The 15 minute cycling generally produced the 

lowest errors while also generating the best 2-4 hour updraft helicity forecasts of ongoing 

convection.  This study indicates the potential for significant improvement in short-term 

forecasting of severe storms from the assimilation of hyperspectral geostationary satellite data. 

However, more studies are required using improved OSSE designs encompassing multiple storm 

environments and additional observation types such as radar reflectivity to fully define the 
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effectiveness of assimilating geostationary hyperspectral observations for high impact weather 

forecasting applications. 
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1. Introduction

Many advancements in numerical weather prediction (NWP) have been made that can be 

attributed to the assimilation of satellite data to improve the analysis of the atmospheric state 

where traditional observations are not available (Derber and Wu, 1998; Le Marshall et al., 2007). 

Satellite observations include, but are not limited to, cloud-track winds (CTWs), retrieved 

temperature and humidity profiles, precipitation estimates, and recently lightning observations 

(Velden et al., 1998; Hou et al., 2004; Reale et al., 2008; Mansell et al., 2007; Schmitt et al., 

2008). Each of these observation types can be assimilated into a NWP model to improve certain 

aspects of the model state. In recent years, assimilating information from hyperspectral sounders 

via infrared radiances or temperature and humidity retrievals has become a key component in 

NWP models (e.g., McNally et al., 2006; Reale et al., 2008; Li and Liu, 2009; Migliorini, 2012; 

Jones and Stensrud, 2012). One of the most significant limitations of NWP is the lack of 

observations describing the vertical structure of the atmosphere at high spatial and temporal 

scales. A partial solution to the current data void is provided by hyperspectral infrared 

spectrometers including the 2378-channel Atmospheric InfraRed Sounder (AIRS), the 8461-

channel Infrared Atmospheric Sounding Instrument (IASI), and the 1305-channel Cross-track 

Infrared Sounder (CrIS). Temperature and humidity profiles can be retrieved from both 

instruments with high vertical resolution in clear to partly cloudy conditions from near the 

surface into the stratosphere (Aumann et al., 2003; Susskind et al., 2003; 2006). With such large 

channel sets, these instruments can substantially decrease the uncertainty of retrieved vertical 

profiles compared to other sounding instruments, which typically have no more than a few dozen 

channels.  
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Studies of assimilating retrieved profiles from polar orbiting sounders into NWP models 

have generally found a positive impact on model analyses and forecasts at various temporal and 

spatial scales (e.g., Le Marshall et al., 2006; Chou et al., 2007; Reale et al., 2008).  Several 

studies focused on the impact of assimilating hyperspectral profiles on tropical cyclone track and 

intensity forecasts (Wu et al., 2006; Li and Liu, 2009; Liu and Li, 2010; Pu and Zhang, 2011; 

Atlas and Pagano, 2014). For example, Li and Liu (2009) and Liu and Li (2010) show an 

improvement to 12 – 96 hour track forecasts resulting from a better analyses of the mid-

tropospheric temperature and mixing ratio while smaller, but still significant improvements, are 

present for intensity forecasts.  Pu and Zhang (2011) found similar results while noting the 

possible need for bias adjustments in the assimilated profiles to further reduce forecast error.  

Additional research has been conducting focusing on the impacts of assimilating hyperspectral 

sounder profiles for severe weather events. Chou et al. (2010) describe an event in eastern Texas 

on 12-13 February 2007 in which AIRS profiles improved the characterization of the 

thermodynamic near storm environment leading to more accurate 6 hour precipitation forecasts.  

Jones and Stensrud (2012) further analyzed the impact of assimilating AIRS profiles on two 

Southern Plains events and found that even assimilating a single overpass of high-resolution 

temperature and humidity retrievals could significantly improve the analysis and forecast of the 

pre-storm environment, which should result in better forecasts of convective initiation and storm 

evolution. As in these cited severe weather studies, this research is primary concerned with the 

impact of retrievals on the representation of the environment, not the internal characteristics, of 

severe storms, and the subsequent impact on the evolution of the storms. 



 6 

 One key limitation of polar orbiting hyperspectral instruments is their poor temporal 

resolution relative to the time scales of high impact weather events. The importance of high 

temporal resolution hyperspectral information has been demonstrated by Aune et al. (2000), 

Schmitt et al. (2009) and Bingham et al. (2013). High impact weather events in particular are 

likely to be associated with a rapidly changing environment, which is poorly sampled by current 

observations. If the initial model representation of the environment is incorrect, then any 

potential forecasts will suffer. Even if the initial conditions are correct, it is unlikely the model 

will accurately capture the evolution of the near storm environment without high spatial and 

temporal resolution observations to update the model in a timely manner. A key hypothesis of 

this research is that improvements to the thermodynamic environment from assimilating 

hyperspectral sounder profiles translate to improvements in short-term forecasts of convection.  

  This research uses the Ensemble Adjustment Kalman Filter (EAKF) data assimilation 

scheme (e.g., Kalman, 1960; Anderson, 2001; Anderson and Collins, 2007; Yussouf and 

Stensrud, 2010), rather than the more traditional variational approach (e.g., Barker at al., 2004).  

The primary advantage of the EAKF approach is that it provides a flow dependent and 

dynamically evolving estimate of the multivariate background error covariances that is updated 

at each assimilation cycle. This is an important consideration for rapidly moving and developing 

weather phenomena and allows observations of one variable (say temperature) to influence other 

variables including those not observed (winds in the present study and potentially cloud 

microphysics variables). 

 Since there is no geostationary hyperspectral profiler that currently provides high spatial 

resolution temperature and humidity profiles over North America, this research uses the 

Observing System Simulation Experiment (OSSE) methodology to simulate such observations 
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from a nature run and then to quantify impacts by comparing data assimilations and forecasts 

that include and exclude these data.  Specifically, this study employs a “Quick OSSE” approach 

(Atlas et al., 2015) and an experimental setup similar to that of Jones et al. (2013a). 

Geostationary hyperspectral profilers would be expected to provide a temporal resolution of 

approximately 15 minutes with a spatial resolution on the order of 10 km or better. A case study 

approach is used based on the 20 May 2013 central Oklahoma (OK) tornado event that produced 

a violent tornado in Moore, OK and weaker, short lived tornadoes in southern OK. A very 

unstable, high shear environment was present over the Southern Plains during this day with 

convection forming along a frontal boundary in central OK and a connecting dryline further to 

the south. NWP experiments assimilating real radar and satellite observations of this event have 

shown some skill at forecasting the severe convection, but many uncertainties remain which 

were likely due to the lack of information on the near storm environment being assimilated in the 

model (Wheatley et al., 2016; Jones et al., 2016). An objective of this research is to assess 

whether assimilating near-storm environment information can, in fact, improve the model 

analyses, leading to better short-term (0-3 hour) forecasts of high impact weather events. 

However, these experiments only describe the impact for a single case using an OSSE system 

that is not fully validated and without the benefit of other high-resolution observations such as 

radar data. As a result, the applicability of these results to realistic settings remains uncertain.  

 Following this introduction, Section 2 describes the nature run created to simulate the 20 

May 2013 event with Section 3 describing the synthetic simulated observations derived from the 

nature run. Section 4 provides an overview of the experiment design and Section 5 discusses the 

results of these data assimilation experiments. Finally, concluding remarks are given in Section 

6. 
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2. Nature run 

 A nature run for the 20 May 2013 event was created from a deterministic forecast 

initialized from the Global Forecast System (GFS) analysis at 1200 UTC 14 May. The nominal 

GFS resolution in 2013 was 0.5° with 27 vertical levels which are downscaled to a 4 km 

resolution for the nature run. The nature run used a 1400 x 1200 grid point domain covering the 

continental United States (CONUS) with 56 vertical levels extending from the surface to 10 hPa 

(Fig. 1). The nature run was continuously integrated forward in time until 0000 UTC 21 May 

using the Advanced Weather Research Forecasting (WRF-ARW) model version 3.6.1 

(Skamarock et al., 2008). Ferrier 3-class (cloud water, rain water, and snow mixing ratios) cloud 

microphysics is used along with GFDL shortwave and longwave radiation schemes, MYJ 

boundary layer physics, and the NOAH land surface model with 4 soil layers (Ferrier et al., 

1996; Chou and Suarez, 1994; Janjic, 2002; Ek et al., 2003). Note that cumulus parameterization 

is unnecessary at a 4 km convection permitting resolution and is not used. Boundary conditions 

created from the operational GFS forecast initiated at 1200 UTC 14 May were applied at 3 hour 

intervals through the duration of the nature run. The length of the nature run is dictated by the 

need for the characteristics of the simulated 20 May event to be as independent from the initial 

conditions as possible, but still retain enough predictability to capture an event similar to that 

which occurred in reality. 

  

3. Synthetic observations 

Conventional and hyperspectral IR observations are simulated as described in the 

following. WSR-88D radar observations were not used in this study since the primary goal of 
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this study is to isolate the impacts of assimilating high resolution satellite retrievals to the near 

storm environment. The impacts of assimilating radar reflectivity and Doppler radial velocity 

into high resolution NWP models is well understood and has been the focus of many studies. In 

particular, Wheatley et al. (2015) provide an overview of radar data assimilation for the 20 May 

event using a similar model configuration to the one being used here.  

3.1. Conventional 

Simulated observations are generated from the nature run for a variety of conventional 

observation types including Automated Surface Observing System (ASOS), Aircraft 

Communications Addressing and Reporting System (ACARS) and radiosonde instruments. For 

each ASOS location, 10 m wind speed and direction, 2 m temperature and humidity, and surface 

pressure observations are generated from the nature run at hourly intervals. Vertical profiles of 

temperature, humidity, and wind speed and direction are created to simulate radiosonde 

locations. Finally, simulated ACARS temperature, humidity, and wind observations are 

generated along real flight tracks. For all conventional observation types, location information 

reported in the Meteorological Assimilation Data Ingest Files (MADIS) at a particular analysis 

time is used. Observation measurement errors for each observation are drawn from unbiased, 

uncorrelated Gaussian error distributions that are based on a given sensor’s accuracy. For 

conventional observations, observation errors are based off those used the real-data system 

described by Wheatley et al. (2015) (Table 1).  

3.2. Hyperspectral IR sounder 
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 The synthetic atmospheric sounding retrievals are generated through a two-step process. 

In the first step, synthetic geostationary AIRS (GEO AIRS) radiances are simulated from the 

nature run (Aumann et al. 2003; Goldberg et al. 2003, 2004; Susskind et al. 2003, 2006). The 

GEO AIRS is assumed to replace the current GOES-13, 36,000 km above the equator at the 

longitude of -75 degree. The spatial resolution of the GEO AIRS is assumed to be exactly the 

same as the NR (4 km), but these data are thinned to 20 km to minimize the impact of 

representativeness error on the experiments. Xu (2011) showed that assimilating observations at 

a resolution of 2 times the model grid provides improved results and performance compared to 

assimilating observations at their full resolution. The temperature/moisture profiles, the surface 

skin temperature along with a climatology ozone profile and the UW Baseline Fit Emissivity 

database (Seemann et al., 2008) are used as input for the clear sky radiative transfer calculation 

using the Stand-Alone AIRS Radiative Transfer Algorithm (SARTA; Strow et al., 2003). 

SARTA has been successfully used in previous studies (Weisz, et al., 2007; Li et al., 2009; 

Smith et al., 2012). The cloudy radiances are simulated by coupling the clear sky SARTA 

transmittance with a cloudy radiance model developed by Wei et al. (2004). This model requires 

four parameters to calculate the cloud’s transmittance and scattering: the effective cloud particle 

size, the cloud optical thickness (COT), the cloud top pressure (CTP), and the cloud phase. All of 

this information can be determined from the nature run. This cloudy model coupled with SARTA 

is extremely fast in simulating cloudy radiances compared with the two other candidate radiative 

transfer models—the Community Radiative Transfer Model (CRTM; Chen et al., 2008) and the 

Radiative Transfer for TOVS (RTTOV; Saunders et al., 1999).  Similar to the conventional 

observations, uncorrelated Gaussian errors are added to the simulated radiances based on real 

AIRS sensor specifications. These observation error standard deviations are then tuned to 
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provide optimal ensemble data assimilation statistics such that the ratio of the standard deviation 

of the background spread in observation space to the standard deviation of the errors added to the 

simulated observations is near 1.0 (Xu et al., 2008). This is often labeled the consistency ratio 

(CR). Increasing the observation errors by a factor of 2.0 generated optimal CRs after the first 

few assimilation cycles. During testing, results were relatively insensitive to increasing the 

observation errors by factors from 1.5 to 2.5. The experiments described below all use these 

optimized observation errors (increased by the factor of 2.0).  

 In the second step, a simple linear regression based retrieval algorithm is used to retrieve 

the atmospheric sounding profiles from the nature run radiances. A randomly selected small 

subset (5%) of all the data is used as training to find the regression coefficients (Li et al., 2008, 

2009). In an operational environment, these regression coefficients would be trained on sample 

of data from the previous days or weeks. To ensure consistent retrieval quality, channels affected 

by solar contamination as well as those with large observational noise are excluded. As a result, a 

subset of 1,148 channels were selected for use. The weighting functions of temperature and 

moisture for these channels using a randomly selected profile from the dataset is shown in Figure 

2 (a,b). It is clear that the 1,148 channels provide a high vertical sampling density in the 

troposphere. In the mid-troposphere, the weighting functions are not only dense, but also display 

good sensitivity as depicted by the maximum absolute value of weighting functions. The 

predictors used for the retrievals include the brightness temperature (Tb), the brightness 

temperature squared (Tb
2
), thereby accounting for non-linearity, and other know a priori 

variables such as the nature run surface pressure, local zenith angle, latitude etc. The predictands 

include the profiles of temperature and moisture, and the surface skin temperature. The logarithm 

of mixing ratio is used as the moisture predictand because it is more nearly linearly related to Tb. 
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For the cloudy regression, the four nature run cloud parameters are also used as predictands. 

Three sets of regression coefficients are generated, one for clear sky, one for water clouds, and 

one for ice clouds. In the retrieval, clear sky coefficients are applied to clear sky scenes, and 

cloudy coefficients are applied to cloudy scenes. The cloud mask is determined from the NR. 

This is likely to overestimate the impact from GEO AIRS. In reality, the cloud mask would be 

estimated from the brightness temperatures or by taking advantage of the high quality cloud 

mask product from the IR Imager on the same platform. During the experiment period, the cloud 

mask percentages for clear, water and ice clouds are 39%, 32%, and 29% respectively. Since no 

phase information is known before the retrieval in a real-world application, both sets of cloudy 

regression coefficients are applied. Each retrieval is used to calculate radiances, the best fit to the 

simulated observed radiances is chosen and the cloud phase is assigned accordingly. For both 

clear sky and cloud retrievals, a threshold of 0.8 K (explicitly determined as 2.5 times the 

instrument noise) is used to remove retrievals that do not pass quality control checks; if the 

spectrally averaged absolute difference between calculated and the synthetic radiances is larger 

than this threshold, it is considered of low quality and was abandoned for assimilation.  As a 

result, only 22.2% of all the data are retained (15.7%, 5% and 1.5% for clear, water and ice 

clouds). Figure 2 (c and d) shows the high retrieval quality of the temperature and dewpoint as a 

function of height. Moreover, Figure 3 (a,b) shows these observations still have a very good 

coverage over the Southern Plains domain at 1800 UTC.  

While the simulated retrieved profiles have 101 levels, this number far exceeds the 

amount of independent information present (Forsythe et al., 2015). The 8 vertical levels 

assimilated into the model are 100, 250, 400, 500, 600, 700, 800, and 900 hPa, which are similar 

to the independent levels reported in the standard AIRS retrieval product (Olsen et al., 2007). 
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Assimilating all levels retrieved below 500 hPa did not provide any significant advantages due to 

vertically correlated errors and the lower sensitivity of the radiances themselves to near surface 

conditions (not shown). The number of levels assimilated should be consistent with the vertical 

resolution of the model itself. Assimilating observations with near or better resolution than the 

model will not result in any benefit, and only acts to unnecessarily increase computational costs 

(Migliorini 2012).  Prior to assimilation, mixing ratio observations and observation errors are 

converted to dewpoint as in Jones and Stensrud (2012), since dewpoint observation error has a 

more Gaussian distribution.  

 

4. Experiment design 

This research uses the ensemble data assimilation system described in detail by Wheatley 

et al. (2015). The main components of this data assimilation system are the WRF-ARW version 

3.6.1 forecast model (Skamarock et al., 2008) and the Data Assimilation Research Testbed 

(DART) EAKF developed by NCAR (Anderson and Collins 2007; Anderson et al. 2009). The 

experimental setup follows the configuration employed by Wheatley and Stensrud (2010), 

Yussouf et al. (2013), and Jones et al. (2013b, 2015) with the following key details: A 385 x 265 

horizontal grid at 12-km resolution with 56 vertical levels from approximately 20 m above the 

surface to 10 hPa using a total of 36 members (Fig. 1). All ensemble members use Thompson 

cloud microphysics (Thompson et al. 2004, 2008). Physics diversity is used for the remaining 

parameterization schemes to increase ensemble spread (Stensrud et al. 2000; Wheatley et al. 

2015). Physics options include Kain-Fritsch, Grell, and Tiedtke cumulus parameterization 

schemes (outer domain only), YSU, MYJ, and MYNN boundary layer parameterizations, and 

Dudhia, RRTM, and RRTMG for the radiation (Table 2). The nature run uses MYJ, but 
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otherwise uses different radiation schemes and since it is run at 4 km, no cumulus 

parameterization is used. One similarity between both the NR and assimilation model is the use 

of the 4-layer NOAH land surface model. Other potential land surface models were considered, 

but were found not to perform well in the real-data experiments of Wheatley et al. (2015) and 

Jones et al. (2016).  

 Using this model configuration, a “spin-up” experiment is initiated from the 1800 UTC 

18 May GFS analysis and integrated forward in time 6 hours with no data assimilation. At 0000 

UTC 19 May, hourly cycling begins, during which the simulated conventional observations 

described in Section 3.1 are assimilated on the 12 km grid. Note that radar, GPS/RO, and CTW 

observations were not included. Horizontal and vertical localization radii of 100 km and 4 km are 

applied to all conventional observations using the Gaspari and Cohn (1999) technique. Prior 

adaptive inflation (0.6) is also applied at each analysis cycle. Cycling continues until 1800 UTC 

20 May, which represents the starting point for the hyperspectral temperature and humidity 

profile experiments described below. 

Before undertaking these experiments, it is important to compare the final analysis of the 

spin up experiment at 1800 UTC to the nature run at this time (Fig. 4). Here, and in the figures 

and discussion that follow the analyses and forecasts are ensemble mean analyses and forecasts, 

unless otherwise specified. Overall, CNTL has a 1.0 K positive (warm) bias compared to the 

nature run with a RMSE of 1.5 K. This corresponds to a slight (0.4 g kg
-1

) dry bias with a water 

vapor mixing ratio RMSE of 1.4 g kg
-1

. At 1800 UTC, 20 May 2013, after 6.25 days of model 

integration, the nature run generates a large-scale 500 hPa trough over the central US with a base 

in New Mexico (Fig. 4a). A strong jet is evident with large areas of winds greater than 50 kt 

present. The greatest wind speeds (> 60 kt) lie in eastern Kansas (KS) and western Missouri. The 
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500 hPa flow is favorable for severe weather conditions over a large area from Texas (TX) 

northward to the Great Lakes. This study focuses on severe weather generated in the Southern 

Plains, particularly in Oklahoma (OK). The nature run surface temperature and wind analysis at 

this time shows an area of warm air in western TX and southwestern OK with cooler 

temperatures to the north and east (Fig. 4b). The cooler air is associated with morning cloud 

cover in eastern OK and precipitation in KS. A southwest – northeast oriented front is evident in 

northwestern OK with cool northerly winds behind and warm southerly winds ahead. Further 

south, the surface moisture analysis indicates the presence of a dryline in western OK 

corresponding to a sharp moisture gradient (Fig. 4c). 

The vertical profile of temperature, dewpoint, and wind speed at 1800 UTC were 

extracted from the nature run at -97.44°W and 35.18°N, the location of the Norman, OK 

observing station (Fig. 5a).  A strong capping inversion exists near 880 hPa preventing 

convection from forming at this time, but the capping inversion weakens over the next few 

hours. Surface-based CAPE is 3600 J kg
-1

, which is more than enough to support severe

convection. The vertical wind shear is also favorable except for weak winds in the 800 – 900 hPa 

layer. Wind speed in this layer increases as a function of time as the inversion weakens, thereby 

increasing 0-1 km storm relative helicity to > 250 m
2
 s

-2
 and priming the atmosphere for severe

convection to develop.  

The 500 hPa patterns in the spinup analysis valid at 1800 UTC are broadly similar to that 

of the nature run with both depicting a large scale trough and high wind speeds along its base. 

The spin up wind speeds are generally ~10 kt less than the corresponding nature run values for 

two reasons (Fig. 4a,c). First, the nature run is a 4 km resolution model whereas the domain 

plotted from the spin up experiment is a 12 km run; thus, it is not as likely to resolve the highest 
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wind speed values. Second, the ensemble mean averages out the highest winds speeds in 

individual members since their exact location is not constant from member to member. Overall 

surface conditions are also similar between the nature run and spin up experiment. The 

boundaries between surface warm and cool air are located in the same area of the Southern 

Plains (Fig. 4b,d). The spin up experiment is slightly warmer at the surface compared to the 

nature run. The surface moisture characteristics are also consistent between the nature run and 

spin up experiment (Fig. 4c,f). The vertical profiles of temperature, humidity and wind at the 

location of the Norman, OK observing station are also similar except that the weakness in wind 

near 800 hPa in the nature run is not as evident in the experiment (Fig. 5b). The overall similarity 

between the spin up experiment and nature run, while also containing several detailed 

differences, indicates the data assimilation experiments are also likely to be capable of 

representing severe convection and the environmental conditions which could support severe 

convection, which is a necessary requirement for this research to be successful.  

 Four experiments are conducted to assess the impacts of assimilating simulated 

hyperspectral temperature and humidity profiles into a mesoscale model using the EAKF 

approach. The simulated profiles are also assimilated on the 12 km grid and use horizontal and 

vertical localization radii of 100 and 3 km respectively. All experiments are initialized from the 

spin up run at 1800 UTC 20 May 2013 and cycled forward in time at 15 minute intervals until 

0000 UTC 21 May, with the exception that the control (CNTL) experiment assimilates no 

additional data. The CNTL experiment is still cycled since cycling itself can result in a somewhat 

different result than if an uninterrupted 6 hour forecast were run from the 1800 UTC analyses. 

The CONV1H experiment assimilates simulated conventional observations at hourly intervals 

and is essentially a continuation of the spin up experiment. Hourly simulated temperature and 
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humidity retrievals are added to form the PROF1H experiment. Finally, the PROF15M 

experiment assimilates 15 minute resolution retrievals along with the hourly conventional 

observations. Observations are split into 15 minute chunks with a nominal ±7.5 minute window 

around each 15 minute assimilation time use to determine valid observations. Thus, PROF15M 

assimilates approximately 4 times the number of observations than does PROF1H. PROF15M is 

performed to determine if the high temporal resolution of future geostationary satellite-based 

hyperspectral sounder retrievals have a meaningful advantage over a lower temporal resolution 

product for the case studied here. Forecasts are generated from each experiment beginning at 

2000 and 2100 UTC and integrated out to 0000 UTC 21 May. Each forecast is run in a one-way 

nested configuration with an inner 4 km domain centered over the Southern Plains (Fig. 1). The 

model configuration remains the same as the outer 12 km domain with the exception that 

cumulus parameterization is no longer applied. The higher resolution of the inner grid allows for 

better representation of convection than possible at a 12 km resolution and is directly comparable 

to the 4 km resolution nature run. No data assimilation occurs on the inner 4 km domain.  

 

5. Results 

5.1. Assimilation cycle difference statistics 

 The first step in determining the effectiveness of assimilating simulated temperature and 

humidity profiles is to calculate the mean and RMS of the innovation (observation minus 

background) and residual (observation minus analysis) for each assimilation cycle to assess the 

overall fit of the background and analysis compared to the observations (Dowell et al. 2004; 

Dowell and Wicker 2009). When plotted as a time series, these statistics often show a saw-tooth 

pattern in which mean and RMS differences increase during the forecast cycle from analysis to 
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subsequent background only to be reduced again by the next analysis. Figure 6 shows mean and 

RMS differences for temperature and dewpoint for the CNTL, PROF1H, and PFOH15M 

experiments. Approximately 70,000 temperature and dewpoint observations are assimilated 

during each cycle. No assimilation occurs in CNTL; thus, the magnitude of the differences either 

remain constant or increase as a function of time. Mean CNTL temperature differences vary 

from -0.3 K to -0.5 K by 0000 UTC, indicating that the CNTL experiment becomes increasingly 

warmer than the observations as a function of time (Fig. 6a). The corresponding RMS 

differences also increases in magnitude, from 1.0 to 1.2 K, over the same time period (Fig. 6b). 

For dewpoint, CNTL generates a relatively constant mean difference of -1.7 K, indicating the 

experiment is slightly moister than the observations (Fig. 6c). The corresponding RMS 

differences for dewpoint range between 4.0 – 4.3 K (Fig. 6d). The CONV1H experiment (not 

shown) is very similar to the CNTL experiment since neither assimilates the simulated 

temperature and humidity retrievals.  

Assimilating simulated temperature and humidity profiles at hourly intervals in PROF1H 

reduces the magnitude of the mean and RMS differences for both parameters. At each analysis 

time, the magnitude of the mean differences decreases by 0.05 K with a corresponding decrease 

in RMS difference of 0.1 K. The cumulative impact of assimilating the profile observations on 

temperature is an approximately 50% reduction of the RMS innovation of 0.4 K by 2300 UTC 

compared to CNTL. Even greater relative impacts were observed for dewpoint temperature. 

During the first analysis, the magnitude of the mean dewpoint difference decreases by 85% from 

-1.7 K to only -0.26 K, though it increases slightly in later assimilation cycles (Fig. 6c). 

Corresponding RMS differences stabilize near 2.0 K after 2000 UTC, which is less than 50% of 

the CNTL RMS differences (Fig. 6d). Assimilating observations at 15-minute intervals 
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(PROF15M) has an even greater positive impact. For temperature, the mean differences are only 

-0.15 K by the end of the assimilation period (a 70% reduction), while RMS innovation stabilizes 

near 0.6 K (Fig. 6a,b). The dewpoint mean difference for PROF15M are approximately 0.2 K 

smaller in magnitude compared to PROF1H and the RMS innovations are smaller by over 0.5 K 

after the first few assimilation cycles (Fig. 6c, d). The greatest impacts from data assimilation 

occur during the first hour of the assimilation period. Once the analysis has been modified to 

better match the simulated observations, the data assimilation appears to retain that information, 

reducing later analysis residuals.  

 

5.2. Potential temperature and water vapor differences 

 The spatial distribution of the differences between perturbation potential temperature (i.e. 

potential temperature minus 300 K) and water vapor indicate where assimilating simulated 

temperature and humidity profiles have their greatest impact. Figure 7a shows the difference 

between 5 km AGL perturbation potential temperature difference computed as the difference 

between the nature run and the corresponding ensemble mean analysis temperature from CNTL 

over the Southern Plains domain at 2000 UTC (Nature minus CNTL). To calculate this 

difference, the 4 km nature run is re-sampled to the 4 km nest domain of the experiments. Over 

the northern portion of the domain, the nature run is generally cooler than CNTL while it is 

somewhat warmer in southeastern OK. Assimilating simulated observations should adjust the 

model towards the nature run through the appropriate warming and cooling increments.  

To assess the impact of assimilating the simulated observations, the difference between 

ensemble mean potential temperature between CNTL and the other experiments (Experiment 

minus CNTL) are calculated in the same fashion. For CONV1H, the overall differences are small 
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given the limited number of simulated upper air observations being assimilated. CONV1H is 

slightly cooler (~1K) in northern OK with other small-scale differences in central OK associated 

with the developing convection (Fig. 7b). Assimilating temperature and humidity profiles at 

hourly intervals generates far larger differences. PROF1H is cooler compared to CNTL in KS 

while it is warmer in the western portion of the domain (Fig. 7c). In addition, PROF1H is 

warmer in eastern OK. The spatial patterns of the differences roughly correspond to those 

present between the nature run and CNTL. PROF15M generates a similar spatial pattern of 

potential temperature differences as does PROF1H, but the magnitude of the differences are 

often higher (Fig. 7c,d).  

Figure 8 shows the corresponding 5 km water vapor mixing ratio difference at 2000 UTC 

between the nature run and CNTL (a) and CNTL and the experiments (b,c,d). The nature run is 

generally dryer than CNTL over much of the domain with the only exception occurring near the 

location of early convection in north-central OK (Fig. 8a).  Hourly assimilation of conventional 

observations only (CONV1H) results in small differences in water vapor compared to CNTL 

(Fig. 8b). Much larger differences are generated by PROF1H and PROF15. Both are dryer than 

CNTL in the same areas where the nature run is dryer than CNTL (Fig. 8c,d) indicating that 

assimilating the simulated temperature and humidity profiles are adjusting the moisture in the 

experiment closer to the nature run value. The magnitude of the drying is somewhat larger in 

PROF15M compared to PROF1H, consistent with the temperature difference results (Figs. 7d, 

8d). This indicates that more frequent assimilation has a larger impact, which is fully consistent 

with the lower temperature and dewpoint differences and RMSEs shown previously. 

 

5.3. Atmospheric impacts  
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The impact of assimilating temperature and humidity retrievals is clearly evident from the 

vertical profile of ensemble mean temperature and dewpoint at the OUN sounding site for the 

nature run and each of the 4 experiments at 2000 UTC (Fig. 9). The impact on the temperature 

profile is small since all the experiments, even CTRL perform quite well, especially above 800 

hPa. Much larger differences are present in the moisture profiles. Between 600 – 400 hPa, CNTL 

and CONV1H both overestimate humidity compared to the nature run. However, PROF1H and 

PROF15M both closely match the nature run in this layer indicating that assimilating moisture 

profiles in particular is effective at reducing mid-level moisture errors in the model. 

The vertical distribution of the analysis and forecast errors (i.e., Experiment minus 

Nature) for the entire 4 km domain are calculated to confirm the result shown above. The bias or 

mean error and root mean square error (RMSE) for perturbation potential temperature and water 

vapor mixing ratio are calculated for each layer for each ensemble member. In Figs. 10 and 11, 

the ensemble mean and standard deviation of the layer statistics (bias and RMSE) are plotted as 

symbols and error bars. These error bars provide an estimate of the overall ensemble spread in 

layer bias and RMSE.  

Figure 10 shows bias and RMSE for temperature and water vapor mixing ratio for the 

2000 UTC analysis. First, regarding the temperature impacts, below 500 hPa, all the experiments 

are warmer than the nature run, with the largest warm bias occurring near the surface (Fig. 10a). 

CNTL has the largest bias while PROF15 has the lowest within this layer. Below 850 hPa, most 

of the improvement over CNTL is due to assimilation of conventional surface observations 

(CONV1H) and not profiler observations. An experiment similar to PROF15, but without the 

conventional observations, also resulted in little improvement compared to CNTL at low levels 

(not shown). Above 850 hPa, the impact of the temperature and humidity profiles is larger. In 
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most cases, the PROF15 lowers the bias relative to PROF1H, though the magnitude of the 

difference is small. Between 500 – 200 hPa, both CNTL and CONV1H have a cool bias, which 

is removed in PROF1H and PROF15M, though the spread in bias is quite large in this layer. 

PROF1H and PROF15M also decrease temperature RMSE over CNTL and CONV1H in the 800 

– 200 hPa layer (Fig. 10c). The magnitude of the improvement is greatest near 450 hPa. Also 

note that the standard deviation in RMSE for both PROF1H and PROF15M is quite small and 

lies outside the standard deviation of RMSE from the other experiments throughout most of the 

800 – 200 hPa layer.  

 Next we examine the bias and RMSE for tropospheric water vapor. These error statistics 

are both reduced by assimilating simulated hyperspectral retrieved profiles. The improvement is 

most evident in the middle troposphere (600 – 400 hPa) where CNTL and CONV1H have a 

moist bias, which is substantially reduced in PROF1H and PROF15M (Fig. 10b). RMSE is 

improved over a deeper layer between 800 – 400 hPa (Fig. 10d). Recall that many of the peak 

weighting functions for atmospheric temperature and moisture sensitivity generally occur in the 

mid-to-upper troposphere (Fig. 2), which is similar to the level where the maximum 

improvement in bias occurs. Thus, the greatest positive impacts occur where the sensor is most 

sensitive to moisture, which would be the expected and desirable result.   

While assimilating temperature and humidity profiles have a significant impact on the 

analyses, whether or not these impacts are retained in forecasts is even more important. If the 

model quickly reverts back to the pre-assimilation conditions, then assimilating the temperature 

and humidity profiles would not be useful. Fortunately, the impacts are still clearly evident in 4-h 

forecasts valid at 0000 UTC 21 May (Fig. 11) initiated from the 2000 UTC analyses (Fig. 10). 

Both PROF1H and PROF15M continue to reduce bias and RMSE for temperature compared to 
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CNTL though the ensemble spread is larger since this is a 4 hour forecast (Fig. 11a,d). Both 

these experiments cool the atmosphere compared to CNTL and CONV1H at heights up to 300 

hPa. The cooling impact is slightly larger in PROF15M, which is due to the more frequent data 

assimilation and consistent with the differences in the 2000 UTC analyses. However, the 

additional cooling between 500 – 300 hPa actually results in a colder bias relative to PROF1H 

indicating that assimilating more data is not always optimal. The reduction in moisture bias 

between 600 – 400 hPa also remains, but the improvement in RMSE becomes small (Fig. 11b,d). 

Conversely, the difference in bias between CNTL and PROF1H / PROF15M for u-wind has 

decreased, but the reduction in RMSE remains (not shown). Overall, it is clear that at least some 

information assimilated from the profiler data is being retained at least 4 hours into the forecast 

which in turn should impact the forecast of severe convection within the model. The overall 

vertical bias and error profiles for temperature and humidity are broadly similar at 2000 UTC 

and the 4 hour forecast at 0000 UTC with one major exception. At 0000 UTC all forecasts 

generate a dry bias relative to the nature run between 800 – 700 hPa indicating that the depth of 

the moisture is likely being underestimated by these experiments. Assimilating simulated profiles 

did little to alter this feature.  

 

5.4. Reflectivity forecasts  

 To visualize the impact of the storm environment changes resulting from assimilating 

simulated temperature and humidity profiles, the ensemble mean 3 km AGL reflectivity analysis 

at 2000 UTC and hourly forecasts for CONV1H, PROF1H, and PROF15M are compared to the 

nature run reflectivity over the Southern Plains.  The nature run reflectivity shows the 

progression of convective development from around the time of convective initiation to when 
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convection becomes widespread (Fig. 12).  Convection begins to develop by 2000 UTC with two 

areas of convection developing in central OK and north TX (Fig. 12a). The coverage and 

intensity of the convection in both regions increase further by 2100 UTC (Fig. 12b). 

Development of both areas continues over the next 3 hours with additional convection forming in 

between the original two areas (Fig. 12c-e). The strongest convection in the nature run during the 

2100 – 0000 UTC time period appears to occur over central OK, which is consistent the 

placement of the actual tornadic supercell that occurred on 20 May 2013. 

CONV1H generate two areas of convection, one in central OK, and the other on the 

boarder of OK and TX at 2000 UTC (Fig. 12f), which is broadly similar to the nature run 

analysis at this time (Fig. 12a). The detailed characteristics of simulated radar reflectivity differ 

considerably, but this is due to the much more complex cloud microphysics used in the 

experiments from which more accurate representations of reflectivity can be derived and the fact 

that the ensemble averaging smears out the storm structures in the individual ensemble members. 

This latter effect is particularly evident in the blue edges of the ensemble averages due to the 

spread in the placement of the ensemble storm boundaries. As forecast time increases, storm 

coverage increases with both areas of storms maintained out to 0000 UTC, which is consistent 

with the nature run. However, the coverage and location is not an exact match, leaving room for 

improvement from assimilating temperature and humidity profiles.  

 PROF1H generates reflectivity analyses at 2000 and 2100 UTC similar in appearance to 

the CONV1H with the exception of lower ensemble mean reflectivity values associated with the 

southern area of convection (Fig. 12f,g,k,l). Larger differences emerge by 2200 UTC, or 2 hours 

into the forecast, as PROF1H generates higher ensemble mean reflectivity values in central OK, 

which indicate that this experiment is generating stronger convection and lower overall ensemble 
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spread (Fig. 12m). This difference remains throughout the remainder of the forecast period. 

Assimilation of temperature and humidity profiles at 15 minute intervals further impacts the 

model forecasts. At 2000 and 2100 UTC, PROF15M generates weaker storms than either 

CONV1H or PROF1H (Fig. 12). However, this changes by 2200 UTC, after which PROF15M 

generates the highest reflectivity values. The reason PROF15M suppresses convection relative to 

the other experiments is due to 15 minute assimilation of what are mostly cloud-free or at best 

partly cloudy observations. In particular, all the humidity observations assimilated are sub-

saturated. The more frequent the assimilation, the greater the impact of these sub-saturated 

observations have on nearby saturated areas. Thus, while the environment is improved, 

convection initiation is inhibited. (See further discussion in the Conclusions.)  

 

5.5. Updraft helicity forecasts 

 One of the key goals of this research is to determine if assimilating hyperspectral 

temperature and humidity profiles can improve the forecasts of rotating supercell storms. To 

examine this question, 2-5 km updraft helicity is compared between the nature run and each 

experiment. Updraft helicity (UH) is a diagnostic parameter designed for tracking rotation in 

model-simulated storms that is computed by taking the integral of the vertical vorticity 

multiplied by the updraft velocity between 2 and 5 km AGL (Kain et al. 2008). The probability 

of UH greater than 50 m
2
 s

-2
 is calculated for each experiment over the 0-4 hour forecast period 

beginning at 2000 UTC and compared with the location of nature run UH greater than 50 m
2
 s

-2
. 

Probability is calculated using the 3-by-3 grid point neighborhood around a particular horizontal 

model grid point for each member at a given time in which UH exceeds the above threshold 



 26 

divided by the total number of ensemble members. The maximum probability recorded at each 

horizontal gridpoint during the entire 4 hour forecast period is shown (Figs. 13 and 14). 

The nature run generates two areas of UH greater than 50 m
2
 s

-2
 between 2000 – 0000 

UTC located in central OK and north TX (hatched areas in each panel of Fig. 13). CONV1H 

generates UH probabilities greater than 40% associated with the central OK storm, and greater 

than 60% for the southern storm during this period (Fig. 13a). However, both UH tracks are 

displaced north and east of the UH generated in the nature run. PROF1H reduces the northern 

displacement bias for the central OK storm to some degree, but is otherwise quite similar to 

PROF1H (Fig. 13b). PROF15M differs from the other two experiments by generating greater 

than 40% near the UH present in the nature run for the central OK storm (Fig. 13c). Further 

south, PROF15M appears to decrease UH probabilities compared to the other two experiments. 

PFOF15M also generates a third area of UH just to the southwest of the area in central OK 

corresponding to a signal also present in the nature run.  

The differences between these experiments increase for 3 hour forecasts initiated at 2100 

UTC. Both CONV1H and PROF1H again generate UH probabilities greater than 40% 

corresponding to the central OK storm, but the placement of the UH swaths is well to the north 

and east of the nature run (Fig. 14). Conversely, PROF15M generates a large swath of UH 

probabilities greater than 60% very near to the corresponding nature run for the central OK storm 

track, representing a significant improvement compared to PROF1H. These results indicate that 

the changes to the near-storm environment through assimilating simulated temperature and 

humidity profiles can have a positive impact on their forecasts.  

 

6. Conclusions 
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Assimilating synthetic hyperspectral temperature and humidity profiles using an EAKF 

approach reduced mid-tropospheric temperature and humidity misfits to the observations and 

errors compared to an experiment that only assimilated conventional observations. The greatest 

improvement occurs at the first assimilation cycle after which smaller improvements occur as 

cycling continues. Assimilating synthetics profiles at hourly intervals proved successful, but 15 

minute cycling generally produced somewhat smaller biases and errors compared to the hourly 

cycling experiments. The improvements persist several hours into the forecast period after data 

assimilation has ceased.  

The impacts to the near-storm environment resulted in large differences in the forecast 

evolution of convection within the model. The 15 minute cycling experiments generally 

produced the most skillful forecasts of reflectivity and updraft helicity in the 2-4 hour time 

period. However, the 15 minute experiments did have difficulty spinning up convection 

compared to the hourly and even conventional data only experiments. It is likely that 

assimilating only data in cloud-free areas at high temporal intervals has the unwanted impact of 

suppressing nearby cloud cover and precipitation since the influence of clear-sky observations 

extends beyond the observation location. While this result is concerning, this problem would be 

significantly reduced if information relating to clouds and precipitation were also assimilated 

into these experiments. Any real-time, operational NWP model designed for high weather impact 

forecasts would likely include this information and would likely reduce the negative impact to 

convective initiation caused by the assimilation of large amounts of cloud-free data. The 

preliminary experiments describe here suggest that as improved spatial and temporal resolution 

hyperspectral data become available, their importance in improving forecasts of high weather 

impacts will increase.  
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 This research only represents a preliminary study of the impact of geostationary 

hyperspectral observations to severe weather forecasting and significant additional research is 

required to fully understand and quantify the potential impact. Future experiments should utilize 

a higher resolution OSSE run over an extended time period, or for several cases, containing 

multiple severe weather events. The new OSSE should also use advanced cloud microphysics so 

that other high resolution observations of cloud and precipitation properties such as radar 

reflectivity can be simulated. Further improvements to the treatment of partly cloudy radiances 

and retrievals is also required. Thus, while the results shown for this example are indeed 

promising, much more work is required to determine their overall applicability to high impact 

weather forecasting.  
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Figure Captions 

Figure 1. Geographical domains of the 4 km resolution nature run (NATURE), the 12 km 

horizontal resolution mesoscale experiments (EXP), and the 4 km nest (NEST) used for 

verification against the nature run.  

Figure 2. Temperature (a) and dewpoint (b) vertical weighting functions for the simulated 

GEO_AIRS instrument. The standard deviation (STDDEV) of the retrieval error of (c) 

temperature and (d) moisture (dewpoint) for simulated observations passing quality control. 

Figure 3. Synthetic temperature (a) and water vapor mixing ratio (b) retrievals at 800 hPa at 

1800 UTC over the Southern Plains domain. White areas indicate where no retrievals were 

possible due to high clouds.   

Figure 4. (a) Wind speed (knots) and direction at 500 hPa, (b) surface (2 m) temperature and 10 

m winds, and (c) surface (2 m) water vapor mixing ratio for the nature run at 1800 UTC 20 May. 

Panels d, e, and f are identical, but for the spin-up ensemble mean analysis. The black dot 

indicates the location of Norman, OK (OUN) and the black and red lines indicate the 

approximate locations of the front and dryline respectively. 

Figure 5. Temperature, dewpoint, and wind speed and direction profiles from (a) the Nature run 

and (b) the spin-up analysis located at Norman, OK (OUN) at 1800 UTC 20 May. 

Figure 6. Mean (left panels) and RMSE (right panels) innovations (observations minus 

background) and residuals (observation minus analysis) for (top) temperature and (bottom) 

dewpoint temperature for CNTL, PROF1H, and PROF15M experiments for each assimilation 

cycle between 1800 UTC 20 May and 0000 UTC 21 May. 

Figure 7. Potential temperature differences at 5 km and 2000 UTC 20 May with respect to the 

CNTL analysis for (a) the nature run (Nature), and for the (b) CONV1H, (c), PROF1H, and (d) 

PROF15M ensemble mean analyses. 

Figure 8. Water vapor mixing ratio difference at 5 and 2000 UTC 20 May with respect to the 

CNTL analysis for (a) the nature run (Nature), and for the (b) CONV1H, (c), PROF1H, and (d) 

PROF15M ensemble mean analyses. 

Figure 9. Vertical profile of temperature, dewpoint, and wind speed (kt) for each ensemble 
mean analysis and for the nature run at 2000 UTC at Norman OK (OUN). 

Figure 10. Vertical profiles of temperature and water vapor mixing ratio mean errors (top) and 

RMSE (bottom) for the 4 km nest for the 2000 UTC analysis. The mean and RMSE are 

calculated at each level for each ensemble member. Then the ensemble mean and standard 

deviations of these statistics are plotted as lines and error bars, respectively.  

Figure 11. Same as Figure 10, but for a 4 hour forecast valid at 0000 UTC 21 May. 
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Figure 12. Simulated radar reflectivity at 3 km AGL from the nature run at 2000 (a), 2100 (b), 

2200 (c, 2300 (d), and 0000 UTC (e) 20 May. Ensemble mean radar reflectivity at 3 km AGL for 

the 2000 UTC analysis and following forecasts at 2100, 2200, 2300, and 0000 UTC for 

CONV1H, PROF1H, and PROF15 experiments (f-t).  

Figure 13. Ensemble estimated probability of 2-5 km updraft helicity integrated over a 4 hour 

forecast initiated at 2000 UTC 20 May greater than 50 m
2
 s

-2
 for (a) CONV1H, (b) PROF1H, and

(c) PROF15 experiments. In each panel the hatched areas indicate location of nature run helicity

greater than 50 m
2
 s

-2
 over the same time period.

Figure 14. Same as Figure 14, but a for 3 hour forecasts initiated at 2100 UTC. 
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Figure 1. Geographical domains of the 4 km resolution nature run (NATURE), the 12 km 

horizontal resolution mesoscale experiments (EXP), and the 4 km nest (NEST) used for 

verification against the nature run.  

 



45 

Figure 2. Temperature (a) and dewpoint (b) vertical weighting functions for the simulated 

GEO_AIRS instrument. The standard deviation (STDDEV) of the retrieval error of (c) 

temperature and (d) moisture (dewpoint) for simulated observations passing quality control. 
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Figure 3. Synthetic temperature (a) and water vapor mixing ratio (b) retrievals at 800 hPa at 

1800 UTC over the Southern Plains domain. White areas indicate where no retrievals were 

possible due to high clouds.   
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Figure 4. (a) Wind speed (knots) and direction at 500 hPa, (b) surface (2 m) temperature and 10 

m winds, and (c) surface (2 m) water vapor mixing ratio for the nature run at 1800 UTC 20 May. 

Panels d, e, and f are identical, but for the spin-up ensemble mean analysis. The black dot 

indicates the location of Norman, OK (OUN) and the black and red lines indicate the 

approximate locations of the front and dryline respectively. 
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Figure 5. Temperature, dewpoint, and wind speed and direction profiles from (a) the Nature run 

and (b) the spin-up analysis located at Norman, OK (OUN) at 1800 UTC 20 May. 
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Figure 6. Mean (left panels) and RMSE (right panels) innovations (observations minus 

background) and residuals (observation minus analysis) for (top) temperature and (bottom) 

dewpoint temperature for CNTL, PROF1H, and PROF15M experiments for each assimilation 

cycle between 1800 UTC 20 May and 0000 UTC 21 May. 
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Figure 7. Potential temperature differences at 5 km and 2000 UTC 20 May with respect to the 

CNTL analysis for (a) the nature run (Nature), and for the (b) CONV1H, (c), PROF1H, and (d) 

PROF15M ensemble mean analyses. 
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Figure 8. Water vapor mixing ratio difference at 5 and 2000 UTC 20 May with respect to the 

CNTL analysis for (a) the nature run (Nature), and for the (b) CONV1H, (c), PROF1H, and (d) 

PROF15M ensemble mean analyses. 
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Figure 9. Vertical profile of temperature, dewpoint, and wind speed (kt) for each ensemble 
mean analysis and for the nature run at 2000 UTC at Norman OK (OUN). 
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Figure 10. Vertical profiles of temperature and water vapor mixing ratio mean errors (top) and 

RMSE (bottom) for the 4 km nest for the 2000 UTC analysis. The mean and RMSE are 

calculated at each level for each ensemble member. Then the ensemble mean and standard 

deviations of these statistics are plotted as lines and error bars, respectively.  
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Figure 11. Same as Figure 10, but for a 4 hour forecast valid at 0000 UTC 21 May. 
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Figure 12. Simulated radar reflectivity at 3 km AGL from the nature run at 2000 (a), 2100 (b), 

2200 (c, 2300 (d), and 0000 UTC (e) 20 May. Ensemble mean radar reflectivity at 3 km AGL for 

the 2000 UTC analysis and following forecasts at 2100, 2200, 2300, and 0000 UTC for 

CONV1H, PROF1H, and PROF15 experiments (f-t).  
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Figure 13. Ensemble estimated probability of 2-5 km updraft helicity integrated over a 4 hour 

forecast initiated at 2000 UTC 20 May greater than 50 m
2
 s

-2
 for (a) CONV1H, (b) PROF1H, and 

(c) PROF15 experiments. In each panel the hatched areas indicate location of nature run helicity 

greater than 50 m
2
 s

-2
 over the same time period.  
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Figure 14. Same as Figure 14, but a for 3 hour forecasts initiated at 2100 UTC. 
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Tables 
 
Sensor  Observation Type  Error 
METAR  Temperature   1.75 K 
METAR  Dewpoint   Lin and Hubbard (2004) model 
METAR  U, V wind components 1.75 ms-1 
METAR  Altimeter   1.0 hPa 
Radisonde  Temperature    0.8 – 1.5 K 
Radisonde  Dewpoint   Lin and Hubbard (2004) model 
Radisonde  U, V wind components 1.4 – 3.0 ms-1 
Radisonde  Altimeter   1.0 hPa 
ACARS   Temperature   1.0 – 1.7 K 
ACARS   U, V wind components 2.5 ms-1 
 
Table 1. Conventional observation types and errors used during this experiment.  
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Parameterizations 

Member Cumulus PBL  Radiation 

SW LW 

1 Kain-Fritsch YSU Dudhia RRTM 

2 YSU RRTMG RRTMG 

3 MYJ Dudhia  RRTM 

4 MYJ RRTMG RRTMG 

5 MYNN Dudhia  RRTM 

6 MYNN RRTMG RRTMG 

7 Grell  YSU Dudhia  RRTM 

8 YSU RRTMG RRTMG 

9 MYJ Dudhia  RRTM 

10 MYJ RRTMG RRTMG 

11 MYNN Dudhia  RRTM 

12 MYNN RRTMG RRTMG 

13 Tiedtke YSU Dudhia  RRTM 

14 YSU RRTMG RRTMG 

15 MYJ Dudhia  RRTM 

16 MYJ RRTMG RRTMG 

17 MYNN Dudhia  RRTM 

18 MYNN RRTMG RRTMG 

Table 2. “Multi-physics” options applied to the ensemble members to initialize ensemble 

members 1-18. This set of physics options also is applied to the same GEFS ensemble members, 

in reverse order, to initialize ensemble members 19-36 of the NEWS-e. All ensemble members 

use Thompson cloud microphysics and the Noah land surface model (Wheatley et al. 2015).  
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Assimilating synthetic hyperspectral sounder temperature and humidity retrievals to 

improve severe weather forecasts 

Highlights: 

1. Assimilates synthetic thermodynamic retrievals from hyperspectral instrument
2. Uses thermodynamic retrievals to sample the near storm environment
3. Improved model environment allows for improved short term forecasts of

convection




